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Abstract 

Einstein's gravitational theory is analyzed from a thermodynamic point of view. A 
thermodynamic potential characterizing the sources of gravitational fields is presented. 
By means of this potential the entropy production density is derived. Einstein's equations 
with dissipative terms appear as linear phenomenologicat laws in the sense of irreversible 
thermodynamics. Some thermodynamic influences on gravitational phenomena are 
discussed. 

1. Introduction 

In many physically interesting cases the sources of gravitational fields can 
be treated as thermodynamic systems, In such situations it is not difficult to 
interpret certain terms of Einstein's theory of gravitation in a thermodynamic 
way. For instance, the energy-momentum tensor as a part of the field equations 
represents the thermodynamic energy aspect, since it contains information about 
stresses, energy flows, and energy densities caused by thermodynamic processes. 
The statement that the divergence of this tensor vanishes may be interpreted as 
relativistic formulation of the first law of thermodynamics. 

The connection between entropy and gravitational phenomena is not  obvious 
at first sight. However, in nonrelativistic thermodynamics entropy is a very 
important quantity.  Robert Emden (1938) excellently pointed out the meaning 
of the entropy principle and its relation to the energy principle, when he wrote 

As a student, I read with advantage a small book by F. Wald entitled The Mistress of the 
IforM and her Shadow. These meant energy and entropy. In the course of advancing know- 
ledge the two seem to me to have exchanged places. In the huge manufactory of natural 
processes, the principle of entropy occupies the position of manager, for it dictates the 
manner and method of the whole business, whilst the principle of energy merely does the 
book-keeping, balancing credits and debits. 

Let us check the validity of this assertion within Einstein's theory. 
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2. Thermodynamic Description of Gravitational Sources 

To describe gravitational sources we use a deductive method comparable to 
the method of thermodynamic potentials in ordinary phenomenological thermo- 
dynamics. As a special thermodynamic system we choose an imperfect fluid. 
Generalizations are possible (see Concluding Remarks). The state of the fluid is 
characterized by the metric tensor gik and two thermodynamic state variables 
(tensors of rank 0), temperature Tand rest mass density p. We denote this set 
of independent state variables by VA, 

(VA)-- (gik, r, P) (2.1) 

We shall see in the next sections that 

L=L(VA, VA,i, VA,i,k)-~--[(1/2K0~ +F] 1 (2.2) 

has all properties of a thermodynamic potential for gravitational sources. 
R and F = F(T, p) are the curvatore scalar and the density of free energy, 
respectively. For later calculations we introduce the abbreviations 

- -  v '  p --Z - -  T '  

e=--p(f+Ts), p=--f+pv (2.3) 

and call them specific volume, specific free energy, specific entropy, pressure, 
energy density, and specific free enthalpy (Gibbs function), respectively, in 
analogy with equivalent definitions in nonrelativistic thermodynamics. 

3. Dynamical Behavior of Gravitational Sources 

Comparing the actual state characterized by VA with virtual states characterized 
by 

VA = VA +6VA = I~4 +(£cf~VA)8o) (3.1) 

we describe the dynamical behavior of the system by the variational principle 

~ r v~d4x>~ 0 (3.2) 
V4 

60.9 ) 0, 6¢O[(V4 ) = 0,  (6CO),i1(V4) = 0 (3.3) 

&LP~ means Lie derivative with respect to a timelike vector field ~k, 

~k~ k < 0 (3.4) 

The potential L multiplied by the root of the fundamental determinant 
g - - det gik is integrated over a certain domain Va in space-time (d4x is the 

1 ~:o = 8 r c k c  - 4, where k is the gravitational constant. 
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four-dimensional volume element). 6 co and its derivative (6 co), i are infinites- 
imal quantities vanishing at the boundary (V4) of V 4. Since the Lie 
derivative with respect to a timelike vector field is a kind of a partial time 
derivative, the variation consists in a comparison of the actual state with 
virtual future states here defined by 56o > 0. It is an essential statement of 
the variational principle that a vector field ~i connecting actual states with 
future states always exists. We shall see that ~k is closely corrnected with 
temperature and four-velocity of the medium. Thus temperature gets a 
fundamental meaning as a geometrical property in space-time. 

Using the boundary conditions (3.3), we obtain 

f ~L~--~VAd4X>~02 (3.5) 

v4 

instead of (3.2) (6/6 VA means variational derivative). Since the inequality 
(3.5) must hold for any variation (3.t)  with arbitrary values 5co >~ O, we 
must have 

5rx/{ 
6VA ~ V A  i> 0 (3.6) 

at every point of the domain V4. We call 

a = g-1/2 6Lx/g 
~VA Se~V~ (3.7) 

entropy production density. Then inequality (3.6) is the second law of thermo- 
dynamics. Let us prove this interpretation. First of all let us show that a forms 
a four-divergence. The potential L as a tensor of rank 0 remains unchanged 
under an infinitesimal transformation of coordinates 

x i' = x i + ~i~7 (3.8) 

(6 ~-is an infinitesimal constant parameter). In this case Noether's theorem 
states 

c a l l  

6Lx/g £f ~VA : (v~Si),i (3.9) ~vA 
where 

can--1 { [3Lx/g ( 3Lx/ff t ] 3Lx/g 

-~ q.v7 } 
c a n  

We call S i canonical entropy flow density. 

(3.to) 

2 Sum convention for A. 
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Equations (3.9), (3.6), and (3.7) completely correspond with the non- 
relativistic second law 

~s 
- -  + divs = o ~> 0 (3.11) 
~t 

which states that the entropy s of a volume element is changed by the entropy 
flow s through the surface and by production (a 2> 0) in the interior. The 
equality sign in (3.11) and (3.6) characterizes thermodynamic equilibrium. To 
calculate the left-hand side of (3.6) for the system considered we introduce the 
unit vector u i by 

~i= ~bli Uibl i= --1 (3.12) 

iS the norm of ~( 
The following considerations will justify the identification 3 

= T -1 (3.13) 

Now, putting (2. I) and (2.2) into (3.6), we obtain 

-~ ( R ~ k - - ½ R g i k ) + ( e + p ) u i u k  +pgik £#~g~'~-- , i ~ > ~ O  (3.14) 

by means of (2.3), (3.12), and (3.13). 
The left-hand side of (3.14) has the typical form of an entropy production 

density o = EMJMXM expressed as a sum of products of thermodynamic "fluxes ~ 

(1 [Rik - ½Rgik] +(e +p)uiu k +pgik, [pu i] ;i) 
(JM)= ;o 

(3.15) 

and "iorces" 

where the "forces" cause the "fluxes." 

Indeed, decomposing 

\rl;k 
into parts parallel and perpendicular to u i (projection tensor: hik =- gik + uiue, 
hieu  k = 0),  

hmihn k ~'~tgik = T-lhmihnk(ui; k + Uk; i) (3.17) 

Uihnk~CP ~gik = (T-1),ihn i -- T-lUn;kbl k (3.18) 

uiuk.LP ~glk = --2(T-X), kU k (3.19) 

3c=I. 
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and interpreting tentatively u i as the four-velocity of the medium, we see that 
~ gik contains the velocity gradient ("rate of  deformation") (3.17) causing 
viscosity effects in hydrodynamics and the thermal gradient (3.18) [including 
Eckart's relativistic addition T -1 ~Jn = T-1 Un;tc uk (Eckart, 1940)] giving rise 
to heat conduction. Thus, .La~ gik unites these expressions in a four-dimensional 
way. 

The process connected with (3.19) is usually assumed to be frozen. In the 
same way as in nonrelativistic thermodynamics we assume linear homogeneous 
relations between the flttxes and forces, 

JM = E LMNXN (3.20) 
N 

especially 

1 (Rik  _. ½Rgik ) + (e + p)uiu k +pgik = Liklm(½ £e~glm ) (3.21) 
KO 

As in general use, we postulate the conservation of rest mass ("frozen equilibrium 
of rest mass production"), 

(pui); i  = 0 (3.22) 

Equations (3.21) are Einstein's gravitational equations for an imperfect 
fluid and, together with (3.22), supply the required conditions allowing us to 
determine the dependence of the state variables V~ on the coordinates x i (that 
means the dynamical behavior of the system). The source term of the gravitational 
field in (3.21) consists of two parts. On the left-hand side we have the energy- 
momentum tensor of a perfect fluid, 

~.itc = --(e + p)uiu I¢ - pgik (3.23) 

whereas the right-hand side represents the a ~ o n  of the irreversible processes 

~ik = ½Lik, m ~ g l m  (3.24) 

The interpretation of }ik implies the identification of u i with the four- 
velocity of the fluid. Hence, the above interpretation of L~'~ k has been correct 

1. 
and T ~k describes the influence of viscosity and heat conduction on gravitational 
phenomena. The material tensor L iktm has to fulfil certain symmetry relations 
(Onsager-Casimir reciprocity relations). Moreover, it is restricted by the 
condition a ~> 0. According to the isotropy of the fluid L iklm consists of the 
material coefficients of viscosity and heat conduction multiplied by vectors 
u i and tensors gik. Because of (3.12) and (3.t3), the vector ~i is called the 
temperature vector (see, e.g., Synge, 1957). It represents the relativistic 
temperature aspect. Let us emphasize that the derivation of Einstein's equations 
which characterize the dynamical behavior may be compared with the determina- 
tion of equilibrium conditions in ordinary thermodynamics by means of  variational 
principles for the thermodynamic potentials. 
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4. Thermodynamie Properties of  Gravitational Sources 

Differentiating the characteristic potential L with respect to the state 
variables VA we obtain the thermodynamic properties (state functions) of the 
system in the same way as in ordinary thermodynamics. 

Let us consider the first derivatives only. To ensure covariance we use 
variational derivatives. The meaning of  both 3L/3p = g-l/2 8(Lgl/2)/gp = _p 
and OL/3T = ps is clear [cf. equation (2.3)]. g-i/2 8(Lgl/2)/6gik cannot be inter- 
preted directly, but 

si= 2~kg-'12 8(LgII2) 1 (ff--Ko F) 
6gik _ Ko ~kRik _ ~i + (4.1) 

is a fundamental quantity. It may be verified 

Therefore 

can l o  ( s i=  s i _  ~ k ; i _  ~ i ;k ) ;k  (4.2) 

S~i = o (4.3) 

S i corresponds to the entropy flow used in nonrelativistic irreversible thermo- 
dynamics. Its normal component vanishes at the surface of an adiabatically 
isolated system. [For proof replace the curvature quantities in (4.1) by the 
energy-momentum tensor.] 

5. Concluding Remarks 

Considering imperfect fluids we have seen that the entropy principle 
determines the explicit form of Einstein's equations, which appear as linear 
phenomenological laws in the sense of irreversible thermodynamics. But the 
method presented is applicable to other thermodynamic systems, too, for 
example to relativistic solids {L = - [ (1 /2~o)R + F(T, c/k)], eik = deformation 
tensor) or fluids (solids) in electromagnetic fields {L = - [(1/2t%)R + F - 
1 ik zB H~'k], Bik, Hik = electromagnetic field tensors}. In all cases known the sum 

[(1/2~o)R + F] is a keystone of the characteristic potential completed by 
kagrangians of nonmetric fields. The close connection between the characteristic 
potential L and kagrangians might stimulate a thermodynamic interpretation 
of the variational principles of classical field theory in the sense of Section 3. 

A detailed description of the dynamical behavior of a system cannot renounce 
the integration of Einstein's equations (3.21) together with (3.22). Neverthe- 
less helpful statements on interactions between thermodynamic and gravitational 
properties can be derived by means of integral theorems. Thus it is possible 
to show that a spatially closed mqiverse with a positive energy density e and a 
positive pressure p can never be in thermodynamic equilibrium. 4 Thermodynamic 

4 A proof wasgiven by the author in Kramer et al. (1972). 
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equilibrium is defined by vanishing of the "forces" XM of all irreversible 
processes, i.e. (Ehlers, 1961)s, 

0 = O, " ~ g i k  = ~i;k + ~k;i = 0 

A second example shows the close connection between entropy S, gravitational 
mass M, and characteristic potential L. Let us assume that a system without 
entropy exchange with the surroundings has two equilibrium states geometrically 
characterized by hypersurfaces x 4 = const (~i = ~4/). At the intermediate states 
irreversible processes take place. Integrating the fourth component of (4.1) over 
the whole volume of the system and subtracting the earlier values from the later 
ones we obtain (~i = ~4 i ~ TN/r'~'44 = 1) 

AM A f l ( l  R )Nf~ s 
AS= 2 x, 

According to (4.3) we have AS ~> 0. Thus we get 

x, : onst ~- ~-gO + d3x < 0 

for a system with nonincreasing gravitational mass M. Tiffs result holds, e.g., for 
a system emitting gravitational radiation in transition from a frozen equilibrium 
state into thermodynamic equilibrium. 

R cfcFcFICCS 

Ehlers, J. (1961). Beitr//ge zur relativistischen Mechanik kontinuierlicher Medien, 
Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse Jahrgang 1961. 
Nr. 11 der Mainzer Akademie der Wissenschaften und der Literatur. pp. 827-828. 

Eckart, C. (1940). PhysicalReview, 58, 919. 
Emden, R. (1938). Nature, 141,908. 
Kramer, D., Neugebauer, G., and Stephani, H. (1972). Fortschritte der Physik, 20, 51. 
Synge, J. L. (1957). The Relativistic Gas (North-Holland, Amsterdam). 

5 Ehlers has derived this equilibrium condition statistically. 


